Package: clinicalsignificance 2.0.0.9000

Benedikt Claus

clinicalsignificance: A Toolbox for Clinical Significance Analyses in Intervention Studies

A clinical significance analysis can be used to determine if an intervention has a meaningful or practical effect for patients. You provide a tidy data set plus a few more metrics and this package will take care of it to make your results publication ready.

Authors:Benedikt Claus [aut, cre]

clinicalsignificance_2.0.0.9000.tar.gz
clinicalsignificance_2.0.0.9000.zip(r-4.5)clinicalsignificance_2.0.0.9000.zip(r-4.4)clinicalsignificance_2.0.0.9000.zip(r-4.3)
clinicalsignificance_2.0.0.9000.tgz(r-4.4-any)clinicalsignificance_2.0.0.9000.tgz(r-4.3-any)
clinicalsignificance_2.0.0.9000.tar.gz(r-4.5-noble)clinicalsignificance_2.0.0.9000.tar.gz(r-4.4-noble)
clinicalsignificance_2.0.0.9000.tgz(r-4.4-emscripten)clinicalsignificance_2.0.0.9000.tgz(r-4.3-emscripten)
clinicalsignificance.pdf |clinicalsignificance.html
clinicalsignificance/json (API)
NEWS

# Install 'clinicalsignificance' in R:
install.packages('clinicalsignificance', repos = c('https://pedscience.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/pedscience/clinicalsignificance/issues

Datasets:

On CRAN:

4.78 score 1 stars 12 scripts 256 downloads 19 exports 54 dependencies

Last updated 12 months agofrom:e19660f5ec. Checks:OK: 7. Indexed: yes.

TargetResultDate
Doc / VignettesOKOct 13 2024
R-4.5-winOKOct 13 2024
R-4.5-linuxOKOct 13 2024
R-4.4-winOKOct 13 2024
R-4.4-macOKOct 13 2024
R-4.3-winOKOct 13 2024
R-4.3-macOKOct 13 2024

Exports:calc_anchorcalc_cutoff_from_datacalc_percentagecalc_rcicreate_summary_tablecs_anchorcs_combinedcs_distributioncs_get_augmented_datacs_get_cutoffcs_get_cutoff_descriptivescs_get_datacs_get_modelcs_get_ncs_get_reliabilitycs_get_summarycs_percentagecs_statisticalgenerate_plotting_band

Dependencies:BayesFactorbayestestRbootclicodacolorspacecontfraccpp11datawizarddeSolvedplyrellipticfansifarvergenericsggplot2gluegtablehypergeoinsightisobandlabelinglatticelifecyclelme4magrittrMASSMatrixMatrixModelsmgcvminqamunsellmvtnormnlmenloptrpbapplypillarpkgconfigpurrrR6RColorBrewerRcppRcppEigenrlangscalesstringistringrtibbletidyrtidyselectutf8vctrsviridisLitewithr

Anchor-Based Approaches

Rendered fromanchor-based-approach.Rmdusingknitr::rmarkdownon Oct 13 2024.

Last update: 2023-10-18
Started: 2023-09-26

Combined Approach

Rendered fromcombined-approach.Rmdusingknitr::rmarkdownon Oct 13 2024.

Last update: 2023-10-18
Started: 2023-09-26

Distribution-Based Approach

Rendered fromdistribution-based-approach.Rmdusingknitr::rmarkdownon Oct 13 2024.

Last update: 2023-10-18
Started: 2023-09-26

Percentage-Change Approach to Clinical Significance in R

Rendered frompercentage-change-approach.Rmdusingknitr::rmarkdownon Oct 13 2024.

Last update: 2023-10-18
Started: 2023-09-26

Statistical Approach

Rendered fromstatistical-approach.Rmdusingknitr::rmarkdownon Oct 13 2024.

Last update: 2023-10-18
Started: 2023-09-26

Readme and manuals

Help Manual

Help pageTopics
Antidepressant Dataantidepressants
Anxiety Dataanxiety
Anxiety Data (Complete)anxiety_complete
Placebo Amplification Dataclaus_2020
Anchor-Based Analysis of Clinical Significancecs_anchor
Combined Analysis of Clinical Significancecs_combined
Distribution-Based Analysis of Clinical Significancecs_distribution
Extract Augmented Data from a cs_analysis Objectcs_get_augmented_data cs_get_augmented_data.cs_anchor_individual_within cs_get_augmented_data.cs_combined cs_get_augmented_data.cs_distribution cs_get_augmented_data.cs_percentage cs_get_augmented_data.cs_statistical cs_get_augmented_data.default
Get Used Cutoff And Type From A cs_analysis Objectcs_get_cutoff
Get Descriptives Used In The Cutoff Calculationcs_get_cutoff_descriptives
Get Data From A cs_analysis Objectcs_get_data
Get The HLM Model From A cs_analysis Objectcs_get_model
Get Number Of Participants From A cs_analysis Objectcs_get_n
Get Reliability Of A cs_analysis Objectcs_get_reliability
Get A Summary Table From A cs_analysis Objectcs_get_summary cs_get_summary.cs_anchor_group_between cs_get_summary.cs_anchor_group_within cs_get_summary.default
Percentage-Change Analysis of Clinical Significancecs_percentage
Statistical Analysis of Clinical Significancecs_statistical
Chronic Pain Datahechler_2014
Marital Therapy Datajacobson_1989
Plot an Object of Class cs_anchor_group_betweenplot.cs_anchor_group_between
Plot an Object of Class cs_anchor_group_withinplot.cs_anchor_group_within
Plot an Object of Class cs_anchor_individual_withinplot.cs_anchor_individual_within
Plot an Object of Class cs_combinedplot.cs_combined
Plot an Object of Class cs_distributionplot.cs_distribution
Plot an Object of Class cs_percentageplot.cs_percentage
Plot an Object of Class cs_statisticalplot.cs_statistical
Print Method for the Anchor-Based Approach for Groups (Between)print.cs_anchor_group_between
Print Method for the Anchor-Based Approach for Groups (Within)print.cs_anchor_group_within
Print Method for the Anchor-Based Approach for Individualsprint.cs_anchor_individual_within
Print Method for the Combined Approachprint.cs_combined
Print Method for the Distribution-Based Approachprint.cs_distribution
Print Method for the Percentange-Change Approachprint.cs_percentage
Print Method for the Statistical Approachprint.cs_statistical
Summary Method for the Anchor-Based Approach for Groups (Between)summary.cs_anchor_group_between
Summary Method for the Anchor-Based Approach for Groups (Within)summary.cs_anchor_group_within
Summary Method for the Anchor-Based Approachsummary.cs_anchor_individual_within
Summary Method for the Combined Approachsummary.cs_combined
Summary Method for the Distribution-Based Approachsummary.cs_distribution
Summary Method for the Percentage-Change Approachsummary.cs_percentage
Summary Method for the Statistical Approachsummary.cs_statistical