Package: clinicalsignificance 2.0.0.9000
clinicalsignificance: A Toolbox for Clinical Significance Analyses in Intervention Studies
A clinical significance analysis can be used to determine if an intervention has a meaningful or practical effect for patients. You provide a tidy data set plus a few more metrics and this package will take care of it to make your results publication ready.
Authors:
clinicalsignificance_2.0.0.9000.tar.gz
clinicalsignificance_2.0.0.9000.zip(r-4.5)clinicalsignificance_2.0.0.9000.zip(r-4.4)clinicalsignificance_2.0.0.9000.zip(r-4.3)
clinicalsignificance_2.0.0.9000.tgz(r-4.4-any)clinicalsignificance_2.0.0.9000.tgz(r-4.3-any)
clinicalsignificance_2.0.0.9000.tar.gz(r-4.5-noble)clinicalsignificance_2.0.0.9000.tar.gz(r-4.4-noble)
clinicalsignificance_2.0.0.9000.tgz(r-4.4-emscripten)clinicalsignificance_2.0.0.9000.tgz(r-4.3-emscripten)
clinicalsignificance.pdf |clinicalsignificance.html✨
clinicalsignificance/json (API)
NEWS
# Install 'clinicalsignificance' in R: |
install.packages('clinicalsignificance', repos = c('https://pedscience.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/pedscience/clinicalsignificance/issues
- antidepressants - Antidepressant Data
- anxiety - Anxiety Data
- anxiety_complete - Anxiety Data
- claus_2020 - Placebo Amplification Data
- hechler_2014 - Chronic Pain Data
- jacobson_1989 - Marital Therapy Data
Last updated 1 years agofrom:e19660f5ec. Checks:OK: 7. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 12 2024 |
R-4.5-win | OK | Nov 12 2024 |
R-4.5-linux | OK | Nov 12 2024 |
R-4.4-win | OK | Nov 12 2024 |
R-4.4-mac | OK | Nov 12 2024 |
R-4.3-win | OK | Nov 12 2024 |
R-4.3-mac | OK | Nov 12 2024 |
Exports:calc_anchorcalc_cutoff_from_datacalc_percentagecalc_rcicreate_summary_tablecs_anchorcs_combinedcs_distributioncs_get_augmented_datacs_get_cutoffcs_get_cutoff_descriptivescs_get_datacs_get_modelcs_get_ncs_get_reliabilitycs_get_summarycs_percentagecs_statisticalgenerate_plotting_band
Dependencies:BayesFactorbayestestRbootclicodacolorspacecontfraccpp11datawizarddeSolvedplyrellipticfansifarvergenericsggplot2gluegtablehypergeoinsightisobandlabelinglatticelifecyclelme4magrittrMASSMatrixMatrixModelsmgcvminqamunsellmvtnormnlmenloptrpbapplypillarpkgconfigpurrrR6RColorBrewerRcppRcppEigenrlangscalesstringistringrtibbletidyrtidyselectutf8vctrsviridisLitewithr
Anchor-Based Approaches
Rendered fromanchor-based-approach.Rmd
usingknitr::rmarkdown
on Nov 12 2024.Last update: 2023-10-18
Started: 2023-09-26
Combined Approach
Rendered fromcombined-approach.Rmd
usingknitr::rmarkdown
on Nov 12 2024.Last update: 2023-10-18
Started: 2023-09-26
Distribution-Based Approach
Rendered fromdistribution-based-approach.Rmd
usingknitr::rmarkdown
on Nov 12 2024.Last update: 2023-10-18
Started: 2023-09-26
Percentage-Change Approach to Clinical Significance in R
Rendered frompercentage-change-approach.Rmd
usingknitr::rmarkdown
on Nov 12 2024.Last update: 2023-10-18
Started: 2023-09-26
Statistical Approach
Rendered fromstatistical-approach.Rmd
usingknitr::rmarkdown
on Nov 12 2024.Last update: 2023-10-18
Started: 2023-09-26